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Quantifying potential coastal impacts
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Possible emissions futures
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Concept diagram of climate modeling
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A problem of scale

The scale at which you want to predict:
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The scale at which you can predict:
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Downscaling

The process of making coarse-resolution
global climate model output relevant at
the local scales of interest



Two main types of downscaling

« Statistical: Use relationships based on
current observations to link large-scale
atmospheric and oceanic features to
phenomena of interest

 Dynamical: Nest a high-resolution

regional climate model (RCM) into a
GCM
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Example of statistical downscaling
applied to Pennsylvania
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Dynamical downscaling results: Spring
precipitation change (%) by mid-century, A2

Canadian Global Climate Model =~ Canadian Regional Climate Model
CGCM3 Change In Seasonal Avg Precip CRCM+cgcm3 Change In Seasonal Avg Precip

MAM 2041-2070 minus 1971-2000 7% MAM 2041-2070 minus 1971-2000 7%
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Future global sea level change

Semi-empirical model of global-mean sea level

based on global-mean surface air temperature
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Downscaling global sea level

projections
Local change = Confidence
global average change medium
+ redistribution effects low

+ local land movement high
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Projected Mid-Atlantic Climate Change

Projected change Likelihood
Warming Extremely likely
Higher sea levels Extremely likely
Higher winter and spring Very likely

precipitation

Higher annual precipitation Likely

Higher winter & spring streamflow |Likely

Greater hydrological extremes Likely

Sources: Boesch (2008), Christensen et al. (2007), Hayhoe et al.
(2007), Najjar et al. (2009), Najjar (2010), Shortle et al. (2009)
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Application of climate change
projections to the Chesapeake Bay

* Formal, quantitative modeling structure
not yet available

* Currently, assessments based on
limited literature, expert opinion
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Likely impacts on the Bay

* Increase in submergence of estuarine wetlands
* Increase in salinity variability

* Increase in harmful algae

* Increase in hypoxia

* Reduction of eelgrass

« Substantially altered interactions among trophic
levels

Main conclusion: restoration efforts must account
for climate change

Source: Najjar et al. (2010) 18



Moving
estuary
analogue:
summer
temperature
change

Source: Boesch (2008)
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Summary

Many steps from greenhouse gas emissions to
coastal impacts - uncertainty

GCMs simulate many large-scale atmospheric
and oceanic phenomena well

Downscaling needed to make GCM output
locally relevant

Uncertainty in physical climate projection
depends on variable of interest

Use of coastal circulation, inundation, and

ecosystem models for climate impact
assessment is in its infancy
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Thank you

21



References

Boesch, D.F., (editor) 2008. Global Warming and the Free State: Comprehensive Assessment of Climate Change Impacts
in Maryland. Report of the Scientific and Technical Working Group of the Maryland Commission on Climate Change.
University of Maryland Center for Environmental Science, Cambridge, Maryland.

Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, W.-T., Laprise, R.,
Rueda, V.M., Mearns, L., Menéndez, C.G., Raisanen, J., Rinke, A., Sarr, A., Whetton, P., 2007. Regional climate
projections. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Editors),
Climate Change 2007: The Physical Science Basis. Contribution of Working Group | to the Fourth Assessment Report
of the Inter%lovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, pp. 847-940.

Hayhoe, K., Wake, C.P., Huntir:/%ton, T.G., Luo, L.F., Schwartz, M.D., Sheffield, J., Wood, E., Anderson, B., Bradbury, J.,
DeGaetano, A., Troy, T.J., Wolfe, D., 2007. Past and future changes in climate and hydrological indicators in the US
Northeast. Climate Dynamics 28, 381-407.

Najjar, R.G., Patterson, L., Graham, S., 2009. Climate simulations of major estuarine watersheds in the Mid-Atlantic region
of the United States. Climatic Change 95, 139-168.

Najjar, R.G., 2010. Analysis of climate simulations for use in the “Climate-Ready Adaptation Plan for the Delaware
Estuary”, Final report to the Partnership for the Delaware Estuary, 21 pp.

Naijjar, R.G., Pyke, C.R., Adams, M.B., Breitburg, D., Hershner, C., Kemp, M., Howarth, R., Mulholland, M., Paolisso, M.,
Secor, D., Sellner, K., Wardrop, D., Wood, R., 2010. Potential climate-change impacts on the Chesapeake Bay.
Estuarine, Coastal and Shelf Science 86, 1-20.

Prentice, I.C., Farquhar, G.D., Fasham, M.J.R., Goulden, M.L., Heimann, M., Jaramillo, V.J., Kheshgi, H.S., Quéré, C.L.,
Scholes, R.J., Wallace, D.W.R., 2001. Chapter 3. The Carbon Cycle and Atmospheric Carbon Dioxide. In: J.T.
Houghton, Y. Ding, D.J. Qr_ig%s, M. Noguer, P.J. van der Linden, X. Da, K. Maskell, C.A. Johnson (Editors), Climate
Change 2001: The Scientific Basis. Cambridge University Press, New York, NY, pp. 183-237.

Rahmstorf, S., 2007. A semi-empirical approach to projecting future sea-level rise. Science 315, 368-370.

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J.,
Stouffer, R.J., Sumi, A., Taylor, K.E., 2007. Climate Models and Their Evaluation. In: S. Solomon, D. Qin, M. Manning,
Z. Chen, M. Marquis, K.B. Aver?/t, M.Tignor, H.L. Miller (Editors), Climate Change 2007: The Physical Science Basis.
Contribution of Working Group [ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Shortle, J., Abler, D., Blumsack, S., Crane, R., Kaufman, Z., McDill, M., Najjar, R., Ready, R., Wagener, T., Wardrop, D.,
2009. Pennsylvania Climate Impact Assessment, Report to the Pennsylvania Department of Environmental Protection,
Environment and Natural Resources Institute, The Pennsylvania State University, 350 pp.

Union of Concerned Scientists, 2008. Climate Change in Pennsylvania: Impacts and Solutions for the Keystone State.
Cambridge, MA, 54 pp.

22



Extra slides
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Figure 1.4. Geographic resolution characteristic of the generations of climate
models used in the IPCC Assessment Reports: FAR (IPCC, 1990), SAR (IPCC, 1996),
TAR (IPCC, 2001a), and AR4 (2007). The figures above show how successive genera-
tions of these global models increasingly resolved northern Europe. These illustra-
tions are representative of the most detailed horizontal resolution used for short-term
climate simulations. The century-long simulations cited in IPCC Assessment Reports
after the FAR were typically run with the previous generation’s resolution. Vertical
resolution in both atmosphere and ocean models is not shown, but it has increased
comparably with the horizontal resolution, beginning typically with a single-layer slab
ocean and ten atmospheric layers in the FAR and progressing to about thirty levels in
both atmosphere and ocean.
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Evaluation of GCMs for Delaware
Estuary Watershed
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Hydrological example: number of short-
term droughts every 30 years
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Legend
- Inundation area

Elevation

Coastal example: T X ==

Inundated
regions by 2100,
B2 scenario

Source: Wu et al. (2009)




Future regionality due to gravity changes

Sea-level change due to 1-
mm yr! sea-level rise
equivalent resulting from
melting of:

" the Greenland Ice Sheet

the W. Antarctic Ice Sheet

Source: Milne et al. (2%%9)




Future regionality due to
changing ocean currents

Projected 215t century change in dynamic sea level
from the GFDL CM2.1 model (A2 scenario)
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Regional changes—Northeast

U.S.

Northeast US Sea level trends, 1950-1999
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In the Northeast U.S.,
sea level is rising
much faster than the
global average, most
likely due to local land
subsidence.

Inferred subsidence
rates are -0.6 to 2.7
mm yr1.

Over the 215t Century,
this is an additional
sea-level rise of -6 to
27 cm.

Sources: Zervas (2001),
Church et al. (2004) 31



